Machine Translation Digest for Aug 10 2025
Here is today's selection of cs.CL papers focusing on advancements in machine translation and language model applications. The common themes include optimizing translation quality and robustness, as well as adapting large language models for cross-lingual evaluations, financial sentiment analysis, and time series forecasting.
ALOPE: Adaptive Layer Optimization for Translation Quality Estimation using Large Language Models
Large Language Models (LLMs) have shown remarkable performance across a wide range of natural language processing tasks. Quality Estimation (QE) for Machine Translation (MT), which assesses the quality of a source-target pair without relying on reference translations, remains a challenging cross-lingual task for LLMs. The challenges stem from the inherent limitations of existing LLM-based QE systems, which are pre-trained for causal language modelling rather than regression-specific tasks, further elevated by the presence of low-resource languages given pre-training data distribution. This paper introduces ALOPE, an adaptive layer-optimization framework designed to enhance LLM-based QE by restructuring Transformer representations through layer-wise adaptation for improved regression-based prediction. Our framework integrates low-rank adapters (LoRA) with regression task heads, leveraging selected pre-trained Transformer layers for improved cross-lingual alignment. In addition to the layer-specific adaptation, ALOPE introduces two strategies-dynamic weighting, which adaptively combines representations from multiple layers, and multi-head regression, which aggregates regression losses from multiple heads for QE. Our framework shows improvements over various existing LLM-based QE approaches. Empirical evidence suggests that intermediate Transformer layers in LLMs provide contextual representations that are more aligned with the cross-lingual nature of the QE task. We make resultant models and framework code publicly available for further research, also allowing existing LLM-based MT frameworks to be scaled with QE capabilities.
CCFQA: A Benchmark for Cross-Lingual and Cross-Modal Speech and Text Factuality Evaluation
As Large Language Models (LLMs) are increasingly popularized in the multilingual world, ensuring hallucination-free factuality becomes markedly crucial. However, existing benchmarks for evaluating the reliability of Multimodal Large Language Models (MLLMs) predominantly focus on textual or visual modalities with a primary emphasis on English, which creates a gap in evaluation when processing multilingual input, especially in speech. To bridge this gap, we propose a novel \textbf{C}ross-lingual and \textbf{C}ross-modal \textbf{F}actuality benchmark (\textbf{CCFQA}). Specifically, the CCFQA benchmark contains parallel speech-text factual questions across 8 languages, designed to systematically evaluate MLLMs' cross-lingual and cross-modal factuality capabilities. Our experimental results demonstrate that current MLLMs still face substantial challenges on the CCFQA benchmark. Furthermore, we propose a few-shot transfer learning strategy that effectively transfers the Question Answering (QA) capabilities of LLMs in English to multilingual Spoken Question Answering (SQA) tasks, achieving competitive performance with GPT-4o-mini-Audio using just 5-shot training. We release CCFQA as a foundational research resource to promote the development of MLLMs with more robust and reliable speech understanding capabilities. Our code and dataset are available at https://github.com/yxduir/ccfqa.
ObfusQAte: A Proposed Framework to Evaluate LLM Robustness on Obfuscated Factual Question Answering
The rapid proliferation of Large Language Models (LLMs) has significantly contributed to the development of equitable AI systems capable of factual question-answering (QA). However, no known study tests the LLMs' robustness when presented with obfuscated versions of questions. To systematically evaluate these limitations, we propose a novel technique, ObfusQAte and, leveraging the same, introduce ObfusQA, a comprehensive, first of its kind, framework with multi-tiered obfuscation levels designed to examine LLM capabilities across three distinct dimensions: (i) Named-Entity Indirection, (ii) Distractor Indirection, and (iii) Contextual Overload. By capturing these fine-grained distinctions in language, ObfusQA provides a comprehensive benchmark for evaluating LLM robustness and adaptability. Our study observes that LLMs exhibit a tendency to fail or generate hallucinated responses when confronted with these increasingly nuanced variations. To foster research in this direction, we make ObfusQAte publicly available.
Event-Aware Sentiment Factors from LLM-Augmented Financial Tweets: A Transparent Framework for Interpretable Quant Trading
In this study, we wish to showcase the unique utility of large language models (LLMs) in financial semantic annotation and alpha signal discovery. Leveraging a corpus of company-related tweets, we use an LLM to automatically assign multi-label event categories to high-sentiment-intensity tweets. We align these labeled sentiment signals with forward returns over 1-to-7-day horizons to evaluate their statistical efficacy and market tradability. Our experiments reveal that certain event labels consistently yield negative alpha, with Sharpe ratios as low as -0.38 and information coefficients exceeding 0.05, all statistically significant at the 95\% confidence level. This study establishes the feasibility of transforming unstructured social media text into structured, multi-label event variables. A key contribution of this work is its commitment to transparency and reproducibility; all code and methodologies are made publicly available. Our results provide compelling evidence that social media sentiment is a valuable, albeit noisy, signal in financial forecasting and underscore the potential of open-source frameworks to democratize algorithmic trading research.
Adapting LLMs to Time Series Forecasting via Temporal Heterogeneity Modeling and Semantic Alignment
Large Language Models (LLMs) have recently demonstrated impressive capabilities in natural language processing due to their strong generalization and sequence modeling capabilities. However, their direct application to time series forecasting remains challenging due to two fundamental issues: the inherent heterogeneity of temporal patterns and the modality gap between continuous numerical signals and discrete language representations. In this work, we propose TALON, a unified framework that enhances LLM-based forecasting by modeling temporal heterogeneity and enforcing semantic alignment. Specifically, we design a Heterogeneous Temporal Encoder that partitions multivariate time series into structurally coherent segments, enabling localized expert modeling across diverse temporal patterns. To bridge the modality gap, we introduce a Semantic Alignment Module that aligns temporal features with LLM-compatible representations, enabling effective integration of time series into language-based models while eliminating the need for handcrafted prompts during inference. Extensive experiments on seven real-world benchmarks demonstrate that TALON achieves superior performance across all datasets, with average MSE improvements of up to 11\% over recent state-of-the-art methods. These results underscore the effectiveness of incorporating both pattern-aware and semantic-aware designs when adapting LLMs for time series forecasting. The code is available at: https://github.com/syrGitHub/TALON.
Curated by yukajii.com |