Machine Translation Digest for Aug 03 2025
Here is today's selection of cs.CL papers exploring advancements in language models and benchmarks. The papers delve into diverse linguistic challenges, from creating comprehensive reading comprehension and speech model benchmarks to addressing language generation and hallucination issues in large language models. Together, they highlight ongoing efforts to enhance model performance across different languages and dialects.
HeQ: a Large and Diverse Hebrew Reading Comprehension Benchmark
Current benchmarks for Hebrew Natural Language Processing (NLP) focus mainly on morpho-syntactic tasks, neglecting the semantic dimension of language understanding. To bridge this gap, we set out to deliver a Hebrew Machine Reading Comprehension (MRC) dataset, where MRC is to be realized as extractive Question Answering. The morphologically rich nature of Hebrew poses a challenge to this endeavor: the indeterminacy and non-transparency of span boundaries in morphologically complex forms lead to annotation inconsistencies, disagreements, and flaws in standard evaluation metrics. To remedy this, we devise a novel set of guidelines, a controlled crowdsourcing protocol, and revised evaluation metrics that are suitable for the morphologically rich nature of the language. Our resulting benchmark, HeQ (Hebrew QA), features 30,147 diverse question-answer pairs derived from both Hebrew Wikipedia articles and Israeli tech news. Our empirical investigation reveals that standard evaluation metrics such as F1 scores and Exact Match (EM) are not appropriate for Hebrew (and other MRLs), and we propose a relevant enhancement. In addition, our experiments show low correlation between models' performance on morpho-syntactic tasks and on MRC, which suggests that models designed for the former might underperform on semantics-heavy tasks. The development and exploration of HeQ illustrate some of the challenges MRLs pose in natural language understanding (NLU), fostering progression towards more and better NLU models for Hebrew and other MRLs.
Word Overuse and Alignment in Large Language Models: The Influence of Learning from Human Feedback
Large Language Models (LLMs) are known to overuse certain terms like "delve" and "intricate." The exact reasons for these lexical choices, however, have been unclear. Using Meta's Llama model, this study investigates the contribution of Learning from Human Feedback (LHF), under which we subsume Reinforcement Learning from Human Feedback and Direct Preference Optimization. We present a straightforward procedure for detecting the lexical preferences of LLMs that are potentially LHF-induced. Next, we more conclusively link LHF to lexical overuse by experimentally emulating the LHF procedure and demonstrating that participants systematically prefer text variants that include certain words. This lexical overuse can be seen as a sort of misalignment, though our study highlights the potential divergence between the lexical expectations of different populations -- namely LHF workers versus LLM users. Our work contributes to the growing body of research on explainable artificial intelligence and emphasizes the importance of both data and procedural transparency in alignment research.
Voxlect: A Speech Foundation Model Benchmark for Modeling Dialects and Regional Languages Around the Globe
We present Voxlect, a novel benchmark for modeling dialects and regional languages worldwide using speech foundation models. Specifically, we report comprehensive benchmark evaluations on dialects and regional language varieties in English, Arabic, Mandarin and Cantonese, Tibetan, Indic languages, Thai, Spanish, French, German, Brazilian Portuguese, and Italian. Our study used over 2 million training utterances from 30 publicly available speech corpora that are provided with dialectal information. We evaluate the performance of several widely used speech foundation models in classifying speech dialects. We assess the robustness of the dialectal models under noisy conditions and present an error analysis that highlights modeling results aligned with geographic continuity. In addition to benchmarking dialect classification, we demonstrate several downstream applications enabled by Voxlect. Specifically, we show that Voxlect can be applied to augment existing speech recognition datasets with dialect information, enabling a more detailed analysis of ASR performance across dialectal variations. Voxlect is also used as a tool to evaluate the performance of speech generation systems. Voxlect is publicly available with the license of the RAIL family at: https://github.com/tiantiaf0627/voxlect.
Quantum-RAG and PunGPT2: Advancing Low-Resource Language Generation and Retrieval for the Punjabi Language
Despite the rapid advancement of large language models (LLMs), low-resource languages remain largely excluded from the NLP landscape. We present PunGPT2, the first fully open-source suite of Punjabi large language models, trained from scratch on a 35GB domain-diverse corpus encompassing literature, religious texts, news, and social discourse. Unlike prior multilingual approaches, PunGPT2 captures rich syntactic and morphological features unique to Punjabi through a tokenizer optimised with byte pair encoding and linguistically aligned pretraining objectives. To improve factual grounding and domain recall, we introduce Pun-RAG, a retrieval-augmented generation framework combining PunGPT2 with a dense FAISS retriever over a curated Punjabi knowledge base. We further develop Pun-Instruct, a parameter-efficient, instruction-tuned variant using QLoRA, enabling robust zero-shot and instruction-following performance with significantly reduced compute needs. As a key innovation, we propose Quantum-RAG, a novel hybrid retrieval system that fuses sparse (BM25) and dense methods with quantum-inspired semantic matching. By encoding queries using amplitude-based embeddings and retrieving via quantum kernel similarity, Quantum-RAG achieves improved contextual relevance with minimal memory overhead marking the first practical integration of quantum representations in low-resource language generation. Our models significantly outperform strong multilingual baselines (mBERT, mT5, MuRIL) in perplexity, factuality, and fluency. This work provides a scalable, reproducible blueprint for extending LLM capabilities to underrepresented languages and pioneers quantum-aware retrieval in low-resource NLP
A comprehensive taxonomy of hallucinations in Large Language Models
Large language models (LLMs) have revolutionized natural language processing, yet their propensity for hallucination, generating plausible but factually incorrect or fabricated content, remains a critical challenge. This report provides a comprehensive taxonomy of LLM hallucinations, beginning with a formal definition and a theoretical framework that posits its inherent inevitability in computable LLMs, irrespective of architecture or training. It explores core distinctions, differentiating between intrinsic (contradicting input context) and extrinsic (inconsistent with training data or reality), as well as factuality (absolute correctness) and faithfulness (adherence to input). The report then details specific manifestations, including factual errors, contextual and logical inconsistencies, temporal disorientation, ethical violations, and task-specific hallucinations across domains like code generation and multimodal applications. It analyzes the underlying causes, categorizing them into data-related issues, model-related factors, and prompt-related influences. Furthermore, the report examines cognitive and human factors influencing hallucination perception, surveys evaluation benchmarks and metrics for detection, and outlines architectural and systemic mitigation strategies. Finally, it introduces web-based resources for monitoring LLM releases and performance. This report underscores the complex, multifaceted nature of LLM hallucinations and emphasizes that, given their theoretical inevitability, future efforts must focus on robust detection, mitigation, and continuous human oversight for responsible and reliable deployment in critical applications.
Curated by yukajii.com |