The Finance Bottleneck, draft excerpt from my new book
I've been working on a new book for a couple months now. It's taken me many false starts to figure out what I'm writing about and then figure out what to actually write. I think this is the first good, sharable part. Hopefully it is! You can check it out on my blog, or I've put it all below since you're kind enough to subscribe and open up this newsletter. When I copied it over, the links were left behind, but I've put the images in.
P.S.: Hey! Hi there! I don't send out emails much anymore. Check-in on Software Defined Talk each week for something I actually do weekly :) The show notes actually have tons of links if you're hungering for that.
The Finance Bottleneck This is a draft excerpt from a book I’m working on, tentatively titled The Business Bottleneck. If you’re interested in the footnotes, leaving a comment, and the further evolution of the book, check out the Google Doc for it.
The Business Bottleneck All businesses have one core strategy: to stay alive. They do this by constantly offering new reasons for people to buy from them and, crucially, stay with them. Over the last decade, traditional businesses have been freaked by competitors that are figuring out better offerings and stealing those customers. The super-clever among these competitors innovate entirely new business models: hourly car rentals, next day delivery, short term insurance for jackets, paying for that jacket with your phone, banks with only your iPhone as a branch, incorporating real-time weather information into your reinsurance risk analysis.
Source: Gartner L2, July 2019.
In the majority (maybe all) of these cases, surviving and innovating is done well with small business and software development cycles. The two work hand-in-hand are ineffective without the other. I’d urge you think of them as the same thing. Instead of business development and strategy using PowerPoint and Machiavellian meeting tactics as their tool, they now use software.
You innovate by systematically failing weekly, over and over, until you find the thing people will buy and the best way to deliver it. We’ve known this for a long time and enshrined it in processes like The Lean Startup, Jobs to Be Done, agile development and DevOps, and disruption theory. While these processes are known and proven, they’ve hit several bottlenecks in the rest of the organization. In the past, we had IT bottlenecks. Now we have what I’ve been thinking of as The Business Bottleneck. There’s several of them. Let’s start by looking at the first, and, thus, most pressingly damaging one. The bottleneck that cuts off business health and innovation before it even starts: finance.
Most software development finance is done wrong and damages business. Finance seeks to be accurate, predictable, and works on annual cycles. This is not at all what business and software development is like.
Business & software development is chaos
Software development is a chaotic, unpredictable activity. We’ve known this for decades but we willfully ignore it like the advice to floss each day. Mark Schwartz has a clever take on the Standish software project failure reports. Since the numbers in these reports say, basically, the same each year, the chart below shows that that software is difficult and that we’re not getting much better at it:
Source: built from excerpts from the 2009 study and 2015 study.
What this implies, though, is something even more wickedly true: it’s not that these project failed, it was that we had false hopes. In fact, the red and yellow in the original chart actually shows that software is performs consistent to its true nature. Let me rework the chart to show this:
Source: built from excerpts from the 2009 study and 2015 study.
What this second version illustrates is that the time and budget it takes to get software software right can’t be predicted with any useful accuracy. The only useful accuracy is that you’ll be wrong in your predictions. We call it software engineering, and even more accurately “development” because it’s not scientific. Science seeks to describe reality, the be precise and correct – to discover truths that can be repeated. Software isn’t like that at all. There’s little science to what software organizations do, there’s just the engineering mentality of what works with what we have time and budget to do.
Source: from Michael Alba.
What’s more, business development is chaotic as well. Who knows what new business idea, what exact feature will work and be valuable to customers? Worse, there is no science behind business innovation – it’s all trial and error, constantly trying to both sense and shape what people and businesses will buy and at what price. Add in competitors doing the same, suppliers gasping for air in their own chaos quicksand, governments regulating, and culture changing people’s tastes, and it’s all a swirling cipher.
In each case, the only hope is rigorously using a system of exploration and refining. In business, you can study all the charts and McKinsey PDFs you want, but until you actually experiment by putting a product other there, seeing what demand and pricing is, and how your competitors will respond, you know nothing. The same is true for software.
Each domain has tools for this exploration. I’m less familiar with business development, and only know the Jobs to Be Done tool. This tool studies customer behaviors to discover what products they actually will spend money on, to find the “job” they hire your company to solve, and then change the business to profit from that knowledge.
The discovery cycle in software follows a simple recipe: you reduce your release cycle down to a week and use a theory-driven design process to constantly explore and react to customer preferences. You’re looking to find the best way to implement a specific feature in the UI to maximize revenue and customer satisfaction. That is, to achieve whatever “business value” you’re after. It has many names and diagrams, but I call this process the “small batch cycle.”
The Home Depot illustrates its small batch cycle, Part Vemana and Brooke Creef, 2018.
For example, Orange used this cycle when perfecting its customer billing app. Orange wanted to reduce traffic to call centers, thus lower costs but also driving up customer satisfaction (who wants to call a call center?). By following a small batch cycle, the company found that its customers only wanted to see the last two month’s worth of bills and their employees current data usage. That drove 50% of the customer base to use the app, helping remove their reliance on actual call centers, driving down costly and addressing customer satisfaction.
These business and software tools start with the actual customers, people, who are doing the buying and use these people as the raw materials and lab to run experiments. The results of these experiments are used to validate, more often invalidate theories of what the business should be and do. That’s a whole other story, and the subject of my previous book, Monolithic Transformation.
We were going to talk about finance, though, weren’t we?
The Finance Bottleneck
Finance likes certainly – forecasts, plans, commits, and smooth lines. But if you’re working in the chaos of business and software development, you can’t commit to much. The only certainty is that you’ll know something valuable once you get out there and experiment. At first all you’ll learn is that your idea was wrong. In this process, failure is as valuable as success. Knowing what doesn’t work, a failure, is the path to finding what does work, a success. You keep trying new things until you find success. To finish the absurd truth: failure creates success.
Software organizations can reliably deliver this type of learning each week. The same is true for business development. We’ve known this for decades, and many organizations have used it as their core differentiation engine.
But finance doesn’t work in these clever terms. “What they hell do you mean ‘failure creates success’? How do I put that in a spreadsheet?” we can hear the SVP of Finance saying, “Get the hell out of this conference room. You’re insane.”
Instead, when it comes to software development, finance focuses only on costs. These are easy to know: the costs of staff, the costs of their tools, and the costs of the data centers to run their software. Business development has similar easy to know costs: salary, tools, travel, etc.
When you’re developing new businesses and software, it’s impossible to know the most important number: revenue. Without that number, knowing if costs are good or bad is difficult. You can estimate revenue and, more likely, you can wish-timate it. You can declare that you’re going to have 10% of your total addressable market (TAM). You can just declare – ahem, assume – that you’re chasing a $9bn market opportunity. Over time, once you’ve discovered and developed your business, you can start to use models like consumer spending vs. GDP growth, or the effect of weather and political instability on the global reinsurance market. And, sure, that works as a static model so long as nothing ever changes in your industry.
For software development, things are even worse when it comes to revenue. No one really tells IT what the revenue targets are. When IT is asked to make budgets, they’re rarely involved in, nor given revenue targets. Of course, as laid out here, these targets in new businesses can’t be known with much precision. This pushes IT to just focus on costs. The problem here, as Mark Schwartz points out in all of his books, is that cost is meaningless if you don’t know the “value” you’re trying to achieve. You might try to do something “cheaply,” but without the context of revenue, you have no idea what “cheap” is. If the business ends up making $15m, is $1m cheap? If it ends up making $180m, is $5m cheap? Would it have been better to spend $10m if it meant $50m more in revenue?
IT is rarely involved in the strategic conversations that narrow down to a revenue. Nor are they in meetings about the more useful, but abstract notion of “business value.” So, IT is left with just one number to work with: cost. This means they focus on getting “a good buy” regardless of what’s being bought. Eventually, this just means cutting costs, building up a “debt” of work that should have been done but was “too expensive” at the time. This creates slow moving, or completely stalled out IT.
A rental car company can’t introduce hourly rentals because the back office systems are a mess and take 12 months to modify – but, boy, you sure got a good buy! A reinsurance company can’t integrate daily weather reports into its analytics to reassess its risk profile and adjust its portfolio because the connection between simple weather APIs and rock-solid mainframe processing is slow – but, sister, we sure did get a good buy on those MIPS! A bank can’t be the first in its market to add Apple Pay support because the payments processing system takes a year to integrate with, not to mention the governance changes needed to work with a new clearinghouse, and then there’s fraud detection – but, hoss, we reduced IT costs by $5m last year – another great buy!
Worse than shooting yourself in the foot is having someone else shoot you in the foot. As one pharmacy executive put it, taking six months to release competitive features isn’t much use if Amazon can release them in two months. But, hey! Our software development processes cost a third less than the industry averages!
Business development is the same, just with different tools and people who wear wing-tips instead of toe-shoes. Hopefully you’re realizing that the distinction between business and software development is unhelpful – they’re the same thing.
The business case is wrong from the start
So, when finance tries to assign a revenue number, it will be wrong. When you’re innovating, you can’t know that number, and IT certainly isn’t going to know it. No one knows the business value that you’re going to create: you have to first discover it, and then figure out how to deliver it profitably.
As is well known, the problem here is the long cycle that finance follows: at least a year. At that scope, the prediction, discovery, and certainty cycle is sloppy. You learn only once a year, maybe with indicators each quarter of how it’s going. But, you don’t really adjust the finance numbers: they don’t get smarter, more accurate, as you learn more each week. It’s not like you can go get board approval each week for the new numbers. It takes two weeks just to get the colors and alignment of all those slides right. And all that pre-wiring – don’t even get me started!
In business and software development, each week when you release your software you get smarter. While we could tag shipping containers with RFID tags to track them more accurately, we learn that we can’t actually collect and use that data – instead, it’s more practical to have people just enter the tracking information at each port, which means the software needs to be really good. People don’t actually want to use those expensive to create and maintain infotainment screens in cars, they want to use their phones – cars are just really large iPhone accessories. When buying a dishwasher, customers actually want to come to your store to touch and feel them, but first they want to do all their research ahead of time, and then buy the dishwasher on an app in the store instead of talking with a clerk.
These kinds of results seem obvious in hindsight, but business development people failed their way to those success. And, as you can imagine, strategy and finance assumptions made 12 to 18 months ago that drove businesses cases often seem comical in hindsight.
A smaller cycle means you can fail faster, getting smarter each time. For finance, this means frequently adjusting the numbers instead of sticking to the annual estimates. Your numbers get better, more accurate over time. The goal is to make the numbers adjust to reality as you discover it, as you fail your way to success, getting a better idea of what customers want, what they’ll pay, and how you can defend against competition.
Small batch finance
Some companies are lucky to just ignore finance and business models. They burn venture capital funding as fuel to rocket towards stability and profitability. Uber is a big test of this model – will it become a viable business model (profitable), or will it turn out that all that VC money was just subsidizing a bad business model? Amazon is a positive example here, over the past 20 years cash-as-rocket-fuel launched them to boatloads of profit.
Most organizations prefer a less expensive, less risky methods. In these organizations, what I see are programs that institutionalize these failure driven cycles. They create new governance and financing models that enforce smaller business cycles, allowing business and software development to take work in small batches. Allianz, for example, used 100 day cycles discover and validate new businesses. Instead of one chance every 365 days to get it right, they have three, almost four. As each week goes by, they get smarter, there’s less waste and risk, and finance gets more accurate. If their business theory is validated, the new business is graduated from the lab and integrated back into the relevant line of business. The Home Depot, Thales, Allstate, and many others institutionalize similar practices.
Source: “The Shift to a New Digital Allianz Germany,” Dr. Daniel Poelchau, Allianz, CF Summit EU, Oct 2016.
Each of these cycles gives the business the chance to validate and invalidate assumptions. It gives finance more certainly, more precision, and, thus, less errors and risk when it comes to the numbers. Finance might even be able to come up with a revenue number that’s real. That understanding makes funding business and software development less risky: you have ongoing health checks on the viability of the financial investment. You know when to stop throwing good money after bad when you’ve invalidated your business idea. Or, you can change your assumptions and try again: maybe no one really wants to rent cars by the hour, maybe they want scooters, or maybe they just want a bus pass.
Business cases focused on growth, not costs With a steady flow of business development learning, you can start making growth decisions. If validate that you can track a team of nuclear power plant workers better with RFID badges, thus directing them to new jobs more quickly and reducing costly downtime, you can then increase your confidence that spending millions of dollars to do it for all plant workers with payoff. You see similar small experiments leading to massive investments in omnichannel programs at places like Dick’s Sporting Goods and The Home Depot.
Finance has to get involved in this fail-to-success cycle. Otherwise, business and software development will constantly be driven to be the cheapest provider. We saw how this generally works out with the outsourcing craze of my youth. Seeking to be the cheapest, or the synonomic phrase, the “most cost effective,” option ends up saving money, but paralyzing present and future innovation.
“Survey Analysis: IT Is Moving Quickly From Projects to Products,” Bill Swanton, Matthew Hotle, Deacon D.K Wan, Gartner, Oct
The problem isn’t that IT is too expensive, or can’t prove out a business case. As the Gartner study above shows, the problem is that most financing models we use to gate and rate business and software development are a poor fit. That needs to be fixed, finance needs to innovate. I’ve seen some techniques here and there, but nothing that’s widely accepted and used. And, certainly, when I hear about finance pushing back on IT businesses cases, it’s symptomatic of a disconnect between IT investment and corporate finance.
Businesses can certainly survive and even thrive. The small, failure-to-success learning cycles used by business and software developers works, are well known, and can be done by any organization that wills it. Those bottlenecks are broken. Finance is the next bottleneck to solve for.
I don’t really know how to fix it. Maybe you do!
Coming soon After finance, for another time, my old friends: corporate strategy. And if you peer past that blizzard of pre-wired slides and pivot tables, you can see just in past the edges of the next bottleneck, that mysterious cabal called “The C-Suite.”
In the meantime, check out Monolithic Transformation or my collection of The Register columns.